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On the Computation of the Class Number 
of an Algebraic Number Field 

By Johannes Buchmann and H. C. Williams* 

Abstract. It is shown how the analytic class number formula can be used to produce 
an algorithm which efficiently computes the class number h of an algebraic number field 
F. The method assumes the truth of the Generalized Riemann Hypothesis in order to 
estimate the residue of the Dedekind zeta function of F at 8 = 1 sufficiently well that h 
can be determined unambiguously. Given the regulator R of F and a known divisor h* 
of h, it is shown that this technique will produce the value of h in O(1dF1l+e/(h*R)2) 
elementary operations, where dF is the discriminant of F. Thus, if h < ldF11/8, then 
the complexity of computing h (with h* = 1) is O(1dFl1/4+6). 

1. Introduction. Let F be an algebraic number field of degree n over the 
rationals Q. It is well known that the class number h of F can be expressed by 
means of the analytic class number formula 

(1.1) h = CF lim (s -1)F(s) 

with 

CF = w1~ 
2r (27r)r2R 

Here we make use of the following notation: 
w is the number of roots of unity in F, 
dF is the discriminant of F, 
r1 is the number of real embeddings of F, 
r2 is the number of pairs of complex embeddings of F, 
R is the regulator of F, and 
fF(s) is the Dedekind zeta function for F. 

Also, it can be shown (see, for example, Wintner [17]) that 

(1.2) p = lim (s - 1)F(s) = 7 E(p), 
pEP 

where P is the set of rational primes and 

E(p) = (1 - p-1) J7(l -N(p)-)- 

is the Euler factor belonging to p. 
Clearly, the formula (1.1) can be used to compute h if it is possible to ap- 

proximate p sufficiently well that the absolute value of the error in evaluating the 
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right-hand side is less than 1/2. This technique has been used quite effectively 
to compute large tables of quadratic and cubic class numbers. (See Williams and 
Broere [16], and Tennenhouse and Williams [15].) Thus, the question arises as to 
whether this method can be used to determine the class number of an arbitrary 
number field. 

We first note that the numbers rl, r2 can be easily computed from the defining 
polynomial 

f (t) = tn +a atn-1 + + an E Z[t]. 

The discriminant dF can be determined by means of the algorithm of Ford and 
Zassenhaus (see Ford [8] and Boffgen [1]) which even yields an integral basis of the 
maximal order 6&F of F. Once this basis is known, the number of roots of unity can 
be easily evaluated. Of course, whenever ri > 0, then w = 2; but, in the totally 
complex case, we can use the algorithm of Fincke and Pohst [7] to enumerate all 
the algebraic integers whose conjugates are all in absolute value 1. 

On the other hand, the computation of the regulator of an arbitrary algebraic 
number field is a very difficult task indeed. Algorithms for solving this problem are 
due to Pohst, Weiler and Zassenhaus [12] and Buchmann [2]. The complexity of 
the regulator computation is analyzed in Buchmann [3]. In this paper we assume 
that R has already been evaluated. 

The purpose of this paper is to present a method to compute h by developing a 
sufficiently good approximation F(Q) of p, where 

(1.3) F(Q) = J E(p) J E(p) 
p<Q P>Q 

p ramified in L 

for some Q > 1. We do this by assuming the truth of the Riemann Hypothesis 
on the Dedekind zeta function of the normal closure L of F. Our method is quite 
distinct from that of Eckhardt [6] which does not- employ any hypothesis. Also, 
as in the quadratic and cubic cases, this technique is much more efficient than the 
unconditional one. 

2. Some Results Concerning E(p). If we write our approximation to h as 

(2.1) h(Q) = CFF(Q), 

the error is 

(2.2) Ih - h(Q)l = CFIP - F(Q)I = CFF(Q)IT(Q) -il 

where 

T(Q) = E(p) 
p>Q 

p unramified in L 

is the tail of the Euler product (1.2). In order, therefore, to estimate the error (2.2), 
we must estimate T(Q) - 1. In order to do this, we must investigate the properties 
of the Euler factors. 

Each Euler factor can be written in the form 

E(p) = (1 + n(P) + + 1 
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Since the norm of each prime ideal p dividing a rational prime p can only take the 
values 

N(p) = pf 

with 0 < f < n, it follows that there can be only a finite number of the sets 
{a, (p), a2 (p), . . ., an_ 1 (p) } which are distinct. Thus, there is a Qo e Z> 1 depending 
only on n such that for every p > Qo 

(2.3) JE(p)-1 -11 < 1. 

From this point further, we assume that all constants depend only on a polyno- 
mial in n, not on dF. We further assume that Q > Qo and that all summations 

Zp>Q are over the primes which are unramified in L. Now 

-log T(Q) = E log (1 + a()+ + an, I (p)) 
P>Q ~ p pn-1/ 

and because of (2.3) we can use the power series expansion of the logarithm to get 

-log T(Q) = > (a p + a2G+) * +apni(1) ( 

a,(p) n-ak (P) ( _J)j+l (n?j1 3pJ 

p p>Q k-2 pk_-2 pk-1 
p>Q p p>Q P k=2 - p>Q j=2 k=1 / 

This last equation can be justified by proving that the three infinite series are 
convergent. In fact, because of the finiteness of the number of distinct Euler factors, 
we can find constants c1, c2 > 0 such that 

n-1 n-1 

E ak(p)Pk < cl and E ak(p)Pk ? C2 

k=2 k=1 

for every p > Q. We also assume that Q > 2C2. We then have 

1 lak (P) I < c< C 1 

2 E k-2 2Q Q 
P>Q P k-2 P>QP - 

and 

o In1 ak (p) < 
E C2) 

yp= 1: pk- 1 - 
p p>Q j=2 k=l p>Q j=2 

< E 2 < 
22 

the last inequality in both results following from the easily verified inequality 
Ep>Q 1/p2 < 1/Q. 

It remains to estimate the series 

E al(p) 

p>Q 

We will do this by extending the method of Cornell and Washington [5]. For this 
purpose we let G be the Galois group of the normal closure L of F viewed as a 
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permutation group on n letters, and we let C,, C2,... , Cm be its conjugacy classes. 
By Pj we denote the set of all unramified prime numbers p in L such that the 
Frobenius automorphism of the extension 6L/p of Z/pZ (for any prime ideal p of 

(<L dividing p) is induced by an element of Cj. Here, (<L denotes the maximal order 
of L. All the prime numbers p E Pj have the same Euler factor 

Ej (p) = (+ alj + p2i +.. + 4n-l,j 

As we wish to estimate Ep>Q a1 (p)/p, we must now determine the value of a1j. 

PROPOSITION 2. 1. Let j E {1, 2, .. ., m}, and let Nj be the number of fixed 
points of any permutation wrj E Cj. Then a1j = 1 - Nj. 

Proof. We can write 

pEj p(p 
- 1) 

E()=(pf i3 - 1) ... (p fkj,i 
- ) 

where (flj,.. fkj,j) is the cycle type of any -3j E Cj, i.e., -wj can be decomposed 
into kj cycles of length flj, f2j . . ., ,3fkj,j . Assume that (flj, f2j, .. , fkj,j) is or- 
dered such that fij is minimal. We are now able to distinguish two cases. 

Case 1. flj > 1. In this case, -wj has no fixed point. Also, 

(2.4) E (p) = 2 + 1)(pf2j .. (pfkj,j _-1) 

Since p is assumed to be unramified, we have Ekj 1 fij = n; hence, upon multiplying 
out the denominator of (2.4) we see that the coefficient of pn-2 is precisely 1. 

Case 2. flj = 1. In this case it is easy to see that -a1j is the number of values 
of i for which fij = 1 (2 < i < kj). It follows that a1j = 1-Nj. 5 

PROPOSITION 2.2. For the values of m and alj defined above we have 

m 

Ea,jICjI = 0. 
j=1 

Proof. For a permutation wr E G denote by 0(wx) the number of fixed points of 7r. 
By Proposition 2.1 we have 

m 

EaljICjI = IG - E 0(w). 
j= 1irEG 

But by Burnside's Orbit Lemma (see Grove [9]) we know that >IEG 0(w) = IG, 
and this proves our assertion. o 

Also, we note that since 

pn-1i 
E(p) > 

pn-1 + pn-2 +.. + 1 > 
P_ 

we have 

(2.5) F(Q) > (log Q)-1 

by Mertens' Theorem (see Hardy and Wright [10, p. 351]). 
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3. Determination of the Value of Q. In order to find the value of Q needed 
to correctly determine h, we define as in [5] the function 

A (t) = E a, (p). 
Q<p<t 

This can evidently be rewritten in the form 
m m 

A(t) = IE 
N 

alj=E a ijrj(t), 
j=1 pEPj j=1 

Q<p<t 

where 7rj (t) is the number of primes less than t in Pj. We now use Oesterle [13, 
Theoreme 3], which asserts that under the Generalized Riemann Hypothesis for the 
Dedekind zeta function of L we have 

irj(t) - IG?1li(t) < IGIK0(t)v logt, 

where 

C(t) = log IdLI (irlogt + (log t)2) + nL + log 

Here, dL is the discriminant of L and nL is the degree of L over Q. It follows from 

Proposition 2.2 that 

m 

IA(t)I = Zaij (7j(t) - li(t)) < C(t) Vt- logt 
j=1 

with 

0(t) = 0(t) ( aiii)l /)Gj. 

Notice that C(t) is a monotone decreasing function of t. By using the argument 
used in [5], we obtain 

>ai (p) 4 + 3log Q 
(3.1) ? 0<C(Q) vIQ 

which shows that Ep >Q ai(p)/p is in fact convergent and, moreover, yields an upper 
bound for the limit. By using (3.1) and some results from Section 2, we have 

THEOREM 3.1. For T(Q) defined above we have 

log T(Q) I < 4+lg QC(Q) + Cl+2cz 
VIQ ~ Q 

Notice that if we put Q = (log IdL 1)2, we see from (1.1), (1.2), (2.5) and Theorem 

3.1 that 

(3.2) hR > (IdF 11/2 (log log IdL 1)- 

We will now show how Theorem 3.1 can be used to compute h. We first suppose 
that we know a factor h* of h. Such a factor can be determined by randomly 
selecting one or several ideals of 6&F and determining the order h* of the subgroup 
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of the class group generated by the ideal classes represented by these ideals. We 
then put H = h/h* and define 

H = H(Q) = Ne QCFR)h 

Here, Ne(x) denotes the nearest positive integer to x. We also put 

= - F(Q)-H 
CFRh* 

Our objective is to determine for what values of Q we have H(Q) = H, i.e., h = 

h*H. For this purpose we define 

4+ 3logQ c1+2c2 
OM(Q= C(Q) Q 

and prove 

THEOREM 3.2. If O/(Q) < log((H + 1)/(H + lI/c)), then H = H. 

Proof. We know from Theorem 3.1 that I log T(Q)I < 0 (Q); hence, it follows 
from our assumption that 

(H + 1/) Ilog T(Q) I < log (ti 

Consequently, 

H+ I,cI < T(Q) < fH+ 
H+ 1 H+ IcI 

But since 
f+ i < H+ 1 

H+IKI - H+Kc 
and 

H + I/cl H H-1 H H-1 

H+1 H-I/cI H+ c 
we get 

ft-i ft+i 
(3.3) < T(Q) < - 

Now H = (H + rz)T(Q); thus, it follows from (3.3) that H - 1 < H < H + 1. 5 

We also point out here that since IdL I can be bounded by a power of IdF I which 
depends only on n, we have 

(3.4) ?/(Q) < (C3 log IdFI)/Q1/2 

for some constant C3 which is independent of dF. 

4. An Algorithm for Determining h. Using Theorem 3.2, we can now 
develop an algorithm for computing h. We denote by {Pi}iEN the sequence of 
prime integers, choose an interval length c (say 500), and define 

ci 

Fi = 1J E(pj). 
j=c(i-1)+1 
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We now have 

ALGORITHM 4.1. Compute h, given h* and R. 
1. i +- 1, F +- 1/(CFh*R). 
2. F F Fi. 
3. H= Ne(F), +- F- H. 
4. If 0P(pi,) > log((H + 1)/(H + Ir.1)), then go to 2. 
5. Otherwise, h +- h*H, and the algorithm terminates. 

We need only explain how Fi is to be computed in Step 2 of this algorithm; that 
is, how do we compute the Euler factor E(p) for a given prime p. We first assume 
that p does not divide the index I of the equation order generated by a root of the 
defining polynomial f (t). We then compute positive integers f, . . . , fk such that 
f (t) can be decomposed modulo p into the product of k irreducible polynomials 
91 (t), 92 (t), ... , gk (t) of degree fl, f2,.. *, fk, respectively. It is well known that 
the Euler factor of p is 

(pfl ... (pfk 1) 

The decomposition type (the values of fl, f2,..., fk) can be determined by 
taking greatest common divisors of tPd - t and f (t) for n > d > 1 as described in 
Knuth [11, Algorithm D, p. 429]. This algorithm will execute in a time interval 
which is polynomial in log p (and n). 

If p does divide I, then the method of Buchmann and Lenstra [4] can be used to 
determine the decomposition type of p. This algorithm also requires a polynomial 
function of logp (and n) elementary operations in order to successfully terminate. 

We also need to analyze the total complexity of this algorithm. As this will 
depend on the choice of the defining polynomial f (t), we must first show that such 
a polynomial exists with bounded coefficients. We will do this in the next section. 

5. The Defining Polynomial. Assume that we know an integral basis wl, 
W2, .-. , wn of F with w, = 1. On reducing the corresponding basis of the Minkowski 
lattice of (F by means of the LLL-reduction algorithm, we may assume that 

(I~) I < 2n/4 ldFl 1/2 (1 < ilj < n), 

where w5i) (i = 1, 2, 3,... , n) are the algebraic conjugates of wj. We define Fi = 

Q(w1, ..,wi), and we assume that Q = F1 5 F2 5# #Fm Fmm+ = 

Fn= F. Since [Fi: Fi-1] > 2 for 2 < i < m, it follows that 
m 

n-=[F: Q] = I[Fi: Fi-11 > 2-; 
i=2 

hence, m lg2n + 1. 
We next apply the usual technique to construct a primitive element Oi of Fi over 

Q. We can take 02 = w2 and then apply induction. Assume that we know ti-1, 
and put a = Oi-1, 3 = wi. Denote by g(t) the minimal polynomial of a over Q and 
by h(t) the minimal polynomial of d over Q. Let 
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and 

h(t) = (t - 1)(t - 2) ... (t - v) 

be the decomposition of g and h in some splitting field M of f9 over Fi. Let ae = (x1, 
/ = /1, and take an element -y E 6Fi_1 such that 

(5.1) Cej +-YI3k#C+ (1<j<i ; 2<k<v). 

Then we can put -yi = -y, Oi = a + -yif. In order for -y (= -yi) to satisfy (5.1), it is 
sufficient that 

Yi 3 / _ 3 (i < j < p;2 < k < v), 

which means that it suffices to take 

(5.2) = max | 
- 

/S l 
1<j<i /3kU +1. _2<;k<v 

We now need to estimate 1-Yi l. In each step of this construction, d is one of the 
basis elements wj. Thus the algebraic number /k - f iS of degree at most n(n - 1), 
and 

(5.3) 1/3k - /1- < Cn /N(/3, - i)1 < Cn2 

with C = 2n/4+1ldFIl/2. If Bi-, > 2 is a bound on the conjugates of a = Oi-1, 
then from (5.2) and (5.3) we get 

kM <3Cn2Bi-i; 

consequently, the conjugates of Oi are bounded by Bi = Bi-, (1 + 3n 2). Since 
02 = w2, we can take B2 = C, and we eventually get B = C(1 + 30n2)10g2 n+l as 
a bound on the conjugates of the generating element 0 = 0,m The discriminant of 
this element is then bounded by B = 2B2n, and we have proved 

PROPOSITION 5.1. There exists a defining polynomial f of F whose discrim- 
inant is bounded by a polynomial in dF which only depends on the degree n of F 
over Q. This polynomial can be computed from a reduced integral basis of F. 

6. Complexity of the Algorithm. We will now assume that F is given by a 
defining polynomial f with the properties described in Proposition 5.1. Under this 
assumption we will analyze the complexity of our technique. 

As we have seen above, the work needed to compute each factor of 

F(Q) = f| E(p) 
p<q 

is polynomial in log IdFI. Thus, we must find a bound for the number of primes 
which occur in this product. We first prove 

PROPOSITION 6.1. If O(Q) < log((H + 1)/(H + lI/c)), then H = H. 

Proof. By Theorem 3.1 and our assumption we have 

H+II < T(Q)< +1 
H +1 

< )<H + I,cI 
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Also, 
H+I,cI H H 
H+1 >H+1-lIc >H +1+1r_c 

and 
H+1 H 

H + l/cl H -1 + jr.1; 
hence, 

H H 
_++,c < T(Q) <H l+ij H + 1 + Itcr. T()1 H -1 + r.1 

ByusingthefactthatH=HT(Q)1--r,wegetH- <H<H+1. o 

COROLLARY. We have +(Q) < log((H + 1)/(H + jtc1)) if and only if 4'(Q) < 
log((H + 1)/(H + IrI)). 

Proof. From Proposition 6.1 and Theorem 3.2 we see that both inequalities imply 
thatH=H. H 

Now 

log H + 1 
> log 1 + 1 > . 

H +IJ,I 2H + j 2H +2' 
Hence, if Q is sufficiently large that 

(6.1) (Q) < 2H+2' 

it follows from the Corollary of Proposition 6.1 that H = H(Q). By a theorem of 
Siegel [14] we know that 

(6.2) 2H+2 < C4dF 11/2 (log ldFl)n-1/Rh*, 

where C4 is a constant which is independent of the value of dF. Thus, from (3.4) 
and (6.2) we see that for any e > 0 there exists a number K such that 

K = O(ldFll+e/(h*R)2) 

and (6.1) holds for any Q > K. 
Thus, we have proved 

THEOREM 6.1. Algorithm 4.1 computes the class number h of F in 

O(IdF1l+6/(h*R)2) 

elementary operations. 

If h < IdFI&, then by (3.2) we have 

R > (ldF i 1/2-a+e:); 

by Theorem 6.1 we can compute h (using h* = 1) in O(IdFI2&,+e) operations. 
Thus, Algorithm 4.1 will find h quite quickly when h is small, say h < IdF I'/8. For 
large values of h it is necessary first to determine a value for h* which will render 
the quantity IdFl/(h*R)2 sufficiently small that Algorithm 4.1 can efficiently com- 
pute H. 
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